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\ SUMMARY

This monograph summarizes the gas dynamics of high-speed guns,
utilizing a gas of low molecular weight at high temperature. Theory
and test results are presented. The reader is assumed to be an advanced

student in engineering. The fundamental ideas and equations are fully
developed.

SOMMAIRE

La monographie suivante s’occupe en resumd de la dynamique des gaz
des ocanons & grande vitesse on employant un gaz de poids moldculaire bas
4 haute température. On rend compte de la thdorie et des rdésultats
d' expériences. Il est admis que le liseur sera au courant au sujet du
génie oivil avancé. Les principes et les formules sont largement exposds,

623.425-823.1:533.6.078

114




CONTENTS

SUMMARY

SOMMAIRE

NOTATION

PART I INTRODUCTORY REMARKS

Section 1 Purpose of Monograph
Section 2 The Basic Requirements for a High-Speed Gun

Section 3 The Velocity Attainable by Use of a Constant
Base Pressure Propellant

PART II THE PREBURNED PROPELLANT (PP) GUN - GENERAL

Section ¢ Description of the Preburned Propellant Gun

Section 5 A Qualitative Description of the Pressure Disturbances
Ocourring During Firing of a Preburned Propellant Gun

Section 6 The Derivation of the Equations for Disturbances
Traveling in the Gas

PART 111 THE CONSTANT DIAMETER PREBURNED PROPELLANT GUN

Seotion 7 Summary of Equations Applicable to an Isentropic Gas
Expansion in a Constant Crou;Sectional Area Tube

Section 8 The Characteristic Equations for the Effectively
Infinite Length Chamber, DC,/D1 =1, PP Gun

Section 8 Role of the Acoustic Inertia in the
Do/ox =1, x, = PP Gun

Section 10 The Equation for the Projectile

Section 11 The Equations for an Ideal Propellant Gas in a PP
Gun With D /D, = 1, X, = o

Seotion 12 The Equations for the Motion of the Projectile
Propelled in a D,/D, =1, x, =, PPIG Gun

Section 13 The Finite Chamber Length D,/D, =1, PP Gun

iv

Page

1il

10

13

13

14

16
17

17

21
23




B ;i-‘;':

PART 1V

PART V

PART VI

THE CHAMBERED PREBURNED FROPELLANT GUN

Section 14 Qualitative Discussion of the DD/D1 >1,
PP Gun

Section 15 The Gas Dynamics Equations for a Chambered
PP Gun

Section 168 Demonstration of the Advantage of Chambrage for

the PP Gun with X, =

Section 17 The Special Case of the PP Gun with Infinite Chambrage

Section 18 The General Equations for the Chambered PP Gun with
Effectively Infinite Length Chamber

Section 19 The Conditions at the Barrel Entrance in a PP
Chambered Gun with X, =

Section 20 Equations for the X, = 0, Chambered PP Gun with
an Ideal Gas Propellant

Senction 21 Obtaining the Maximum Projectile Velocity (Escape
Velocity) for the Chambered PPIG Gun with an

X, =® Chamber

Section 22 Discussion of the Projectile Velocity Inorease in
an x, =, PPIG Gun Due to Infinite Chambrage

Section 23 The Projuctile Velocity Increase for an Xy 2,
PPIG Gun with Any Value of Chambrage

Section 24 The Pressure-Velocity Relation for the Gas in an
X, # @, PPIG Chambered Gun :

Section 23 The Barrel Entry Sonic Approximation to Caloulate
the Projectile Behavior in an x, = , PPIG
Chambered Gun

Section 26 The Calculation of the Firat Reflected Diaturbance
in a PPIG Chambered Gun

COMPLETE NUMERICAL RESULTS FOR THE PROJECTILE BEHAVIOR
IN A PPIG CHAMBERED GUN

Section 27 Calculations by Means of Electronic Computing
Machines :

Bection 28 Numerical Results for the PPIG Chambered Gun

THE INFLUENCE OF GAS IN THE BARREL IN FRONT OF THE
PROJECTILE

Section 20 The Compression Phenomenon and-the Applicable
Equations

vage

32
35

37

38

1?

L1 ]

47

51

51
31

54




PART VII

PART VIII

PART IX

Section 30 An Approximation for the Pressure of the Gas in
Front of the Projeoctile

Section 31 A Convenlent Approximation to Obtain the Projectile
Behavior Witk Pressure in Front of the Projectile

THE RELATION OF A PREBURNED PROPELLANT GUN TO A
SHOCKTUBE

Section 32 The Eguivalence of a PP Gun With Zero Mass Projectile
to a Shocktube

Section 33 The Performance of # Shocktube in the Strong Shock
- Case

Section 34 The Significant Difference Between a Gun and
Shock tube

THE APPLICABILITY OF THE ISENTROPIC THEORY
TO GUNS

Section 33 Is the Gun Process Isentropic?
Section 36 Experimental Results for Guns With Heated Propellants

Section 37 Experiments With a Compressed Gas Laboratory Gun -
Description of the ERMA

Section 38 The ERMA Experimental Results

Section 39 Analytical Considerations of the Effects of
Non-1imentropicity

Section 40 Conclusions as to Methods of Accounting for Boundary
Layer and Projectile Friction

METHODS OF HEATING THE PROPELLANT

Section 41 Use of the Heat of a Chemical Reaction

Section 42 Use of Electrical Aro Heating

Section 43 Shook Heating

Se¢ction 44 The Two-Stage OGun - General Description

Section 45 The Two-Stage Gun - Approximate Calculation Method

Section 48 The Two-Stage Gun - Performance Calculation by
Electronic Computing Machines

vi

38

6o

60

64

65

69

69
69

70
11

12

18

80
80
81
82
84




Page

PART X THE CONSTANT HASE PRESSURE GUN 92

Section 47 The Concept of Maintaining a Constant Base Pressure 92
Section 48 Deducing a Gas Flow Which Maintains the Base

Pressure Constant (The “Similarity Solution'') 93
Section 49 The Variation of Gas Properties for the

Similarity Solution 97
Section 30 The Paths of Characteristics in Eulerian Coordinates

for an Ideal Gas 99
Section 31 Do Shocks Occur? 103

Section 52 Paths of Characteristics in Lagrangian Coordinates
for the Ideal Gas 104

Section 53 Pressure Requirements in a Chambered Gun to Obtain
a Constant Basc Pressure ~ Subsonic Flow, Ydeal Gas 108

Section 54 Pressure Requirements in a Chambered Gun to Obtain a
Constant Base Preasure After Sonic Flow is Reached
for an Ideal Gas 110

Section 33 Required Motion of the Pump Tuboe Piston When it
Enters the Barrel 118

Section 38 Methods of Achieving the Desired Chamber Pressure
Variation 117

Section 37 Remarks on the Effects of Non-idealities on the
Performance of the Constant Base Presaure Gun i2

PART XI THE EFFECTS OF PROPELLANT GAS NON-IDEALITY ON THE

PERFORMANCE OF PREBURNED PROPELLANT GUNS 128
Section 38 The Criteria for Propellant Gas Performance in an

X, =, PP Gun 125
Section 39 The Method of Calculating the PP Gun Performance

With a Non-Iderl Propellant Gas 128
Section 60 The Application of the Criteria to a Propellant

Gas at High Temperature 130
Section 61 Introductory Remarks Concerning a Dense Propellant

Gas 134
Sectlion 62 The Moderately Dense Propellant Gas in an

Xy =@, PP Gun ) 138

Section 83 The Highly Dense Propcllant Gas in an X, T,
PP Gun 138

vii




PART XII

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX @

APPENDIX H

APPENDIX I

APPENDIX J

Section 64 Summarizing Remarks on Dense Propellant Gases in an
X, =, PP Gun

Section 65 Expansion of a Real Propellant Gas in a PP Gun With
Finite Length Chamber

Section 66 The Use of a Semi-Empirical Entropic Equation to
Approximate Actual Propellant Gas Behavior

Section 67 Remarks on Expansion of Liquids and Selids

REMARKS CONCERNING PROJECTILE VELOCITIES - PRESENT
AND FUTURE

Section 68 The Selection of a Propellant

Section 69 Proposed Schemes to Increase Projectile Velocities

Derivation of the Expression for the Time Rate of Change
of a Quantity

The Derivation of the One-Dimensional Unsteady Characteristics
Equations

The Meaning of the Characteristic Theory
The Simple Wave Region in a DO/D1 =1, PP Gun

The Numerical Procedure to Determine the Behavior in a
PP Gun with DD/D‘ =1

The Classical Approximate Solutions to the Internal Ballistics
Problem

Equations for a Shock Moving Into a Oas at Rest in a Closed
End Cylinder

The One-Dimensional Unsteady Characteristic Eyustions for
the Cuse of Gas-Wall Friction and Heat Transfer

The Equivalence of the Ideal and the Abel Equations of State
in Application to the Lagrange Ballistic Problem (DO/D1 =1,
Xy = )

Equations for the Thermodynamic Properties of an Isentropioally
Expanding Ideal Gas

GENERAL REFERENCES

CITED REFERENCES

FIGURES

DISTRIBUTION

viil

Page

143

144

146
148

150

150
151

157

162

166

169

173

178

183

186

188
188

191

192

193
202-313




AALA

=l

n
PP Gun
PPIG Gun
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P

NOTATION

cross-sectional area of barrel

cross-sectional area of chamber

sound speed

sound speed of the gas at x,

covolume

diameter of barrel

diameter of chamber

covolume in semi-empirical entropic equation (66-1)

internal energy of & system in general

frictional force per unit mass at wall on gas layer due to boundafy layer

ness of propellant gas in a PP Gun, or mess of gas in barrel of constant
base pressure gun

mass of gas in back chamber of & two-stage gun
Legrangian coordinate defined as [po dx

enthalpy

barrel length

molecular weight

projectile mass "
mass of piston in pump tube of two-stage gun

number of moles, or exponent in empirically fitted isentropic equation
preburned propellant gun

preburned propell‘nt gun with an ideal gas propellant
pressure

spacial average pressure

heat transfer per unit mass to gas layer

ix.
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utiversal

pus cousiaui

gas constant for & mole of a particular gas (equals R/m)

entropy

time coordinate

temperature

internal energy of a system independent of motion, gravity, capillarity,

electricity, and magnetism

velocity

velocity of a projectile propelled by & constant pressure (p,)

projectile velocity

increase of projectilé'velocity due to chambrage

1ncreése of projectile velocity due to infinite chambrage

velocity of projectile when first wave reflected from breech reaches it

escape vefocity

projectile
projectile
projectile
projectile

projectile

velooity with boundary layer and friction effects
velocity without bounda¥y—1nyer and friotion effects
valocity when there is gas In front of the projectile
velooity when there is no gas in front of the projeoéile

veloclity at muzzle

specific volume

distance coordinate

position of projectils

length of chamber in PP gun

the x coordinate of characteristic line at t = 0 1in the gas in a

constant base pressure gun

value of acceleration of gas mnd projectile in the constant base pressure

gun equal to p.A,/M
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Subscripts

c

f

00

traction OI additional gas particles, used 1n thermal equation:
p = p(1 + )RT

constant in van der Waals equation of state which accounts for the
attractive forces between molecules

parameter which is exponent of semi-empirical entropic equation of state
(Equation (88-1))

ratio of specific heats

defined as (up O - Oh)/bb (see Equation (24-3)), used in p-u relation
for chambered x, = ® , PPIG Gun

parameter which occurs in semi-empiricel equatioun (Equation (66-1))

the x coordinate on a characteristic line in the gas of s constant base
pressure gun

density
Riemann Function defined from do = (dp/ap),

the t coordinate on a characteristic line in the gas of a constant base
pressure gun

deno£es position in chember at entrance to transition section ' ‘
denotes gas directly in front of projectile
denotes gas directly behind shock in barrel ‘
denotes position in barrel at exit of transition section

refers to gas directly behind the projectile or to the projectile

refers to initial state of gas in chamber of PP gun, or to conditions
behind projectile in a constant base pressure gun

refers to position on characteristic at t = 0 in gas of constant base
pressure gun

denotes initial state of gas in barrel in front of projectile or state
of gas in front of shock

denotes state of gas beiiind shock

x1
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Lo

denotes sonic conditions

denotes time when gas becomes sonic at the x = 0 position in & constant
base pressure gun

Other Symbols

D

Dt

denotes time rate of change of a quantity when traveling with the velocity
of a disturbance (u * a); thus

= a+ t °
Dt ot (u a')ax

denotes time rate of change of a quantity when traveling with the velocity
of a gas particle (u); thus

d 3 9

a6 ot U ax

Bars over quantities denote nondimensionel quantities; defined in text.

ldeal gas - & gas described by the equations pv = RT and pv” = constant.

xii




PART I. INTRODUCTORY REMARKS

Section 1
Purpose of Monograph

In the year 1945, arter 700 years of shooting guns, the maximum velocity of
projectiles was 10,000 ft/sec. However, within the past 20 years projectile
velocities obtained from guns have risen spectacularly to a value of 37,080 ft/sec.*
This surprisingly large gain in velocity during a relatively short period of time
was the result of a vigovous effort pursued to make possible the study of hypervelocity
phenomena in the laboratory. The increase in projectile velocity was a reflection of
the increase in our knowledge of the interior ballistics process; the increase in
knowledge still continuss, and, coupled with our advancing technology, gives promise
of effecting in the next 20 years equally large projectile velocity inoreases.
Projectile velocities of 60,000 ft/sec by 1985 seem not only possible but probable.

What is the extent of our knowledge of interior ballistics which made possible the
startlingly large gain in projectile velocity? This monograph will address itself to
answering this query., It will summarize our understanding of the gas dynamics of
high-speed guns, those firing projectiles above 10,000 ft/sec. As is now well
known, in order to achieve high speeds, a gun must use a hot “light gas’ as a
propellant, that is, a gas of low molecular weight at high temperature. This require-
ment for a hot lizht gas propellant becomes obvious from the interior ballistics theory
as unfolded below, ,

The reader is assumed not to be an expert in the fleld of interior ballistics, but
is assumed to be a graduate student in engineering. Consequently, the fundamental
ideas and equations are rather fully presented; thus, included in some detail in the
main text and appendices are explanations of the method of charaoteristics. Inoluded
also are methods for ocalculating gun performence which have now become unnecessary
because of the use of slesctronic computing machines; nevertheless, these methods ald
in the understanding of the interior ballistios., It is hoped that the more knowledga-
able reader will adjust to the inclusion of much elementary material and to the
repetitious style used for olarity.

Section 2

The Basic Requirements for a High-Speed Gun

The basic factors determining the speed of a projectile propelled from a gun may be
simply obtained hy applying Newton'’s foroe equation to the projectile. Schematiocally,
the projectile, during its travel in the gun barrel, may be représented a8 in the sketch
on the following page.

* NASA, Ames Research Center (April 1pes).




Barrel of cross-
M sectional area

Ap

L

The projectile mass is denoted by M , the length of barrel by L , and the cross-
sectional area of the barrel by A . The propellant pressure at the back end of the
projectile is denoted by the letter Py - At any instant of time Newton’s Law
applied to the projectile yields*

! du du
“M—L = Mu, —E = A 2-

where u,. is the instantancous projectile velocity and x
distance traveled by the projectile.

P is the corresponding

If Equation (2-1) is integrated, it becomes
MV"‘/Z- = A f"p dx (2-2)
o PR

where V is the muzzle velocity of the peroctile. With p , the spatisl average
propelling pressure, defined es

1 pL
= fc p, dx, (2-3)
thue projectile velocity becomes
™ v /. (2-4)

This result, Equatio: (2-4), indicates essentially the factors upon which the
projectile velocity depends. To inorease the projectile velocity, one must increase
the value of the quantities under the square ront sign. Thus, the one step in
achieving a higher projeotile velocity 18 to change the sizes of the projectile and
barrel so as to increase the value of AL/M ; this requires, for a given cross-
sectional area A of the barrel, that M be made smaller and L larger.

(Note that if a gun 18 made larger by geometrioally scaling it, AL/M remains the
same.) However, practicality limits these changes, for M may be made only so
small for a given barrel diameter and L may be made only so large (&s frictional

-

and gas dynamic effeots lower § substantially if the barrel is too long - see below).

* For purposes of this discussion, the air pressure in front of the projectile and the frictional
force acting on the projectile have been assumed negligible,
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Unfortunately, after having made AL/M as large as practical, it is found with a

conventional propellant gun that the projectile velocity is still much below that
denired,

From the above considerations one is led to the conclusion that after AL/M is
made as large as practical, the only method of achieving high velocity is to increase
the average propelling pressure P .

The reason for the difficulty in obtaining a high average pressure in the case of a
gun using @ convertional powder propellant is illustrated by the following sketch.

Here the pressure behind the projectile in the conventional gun is plotted as &
function of its travel. The rise in pressure from zero to the peak pressure Py
results from the burning of the propellant; as will bt shown below, the rapid pressire
decrease thereafter results mainly from the propellant inertia as the propellant gas
accelerates to push the projectile., It is evident from the sketoh that the average

-

pressure § is considerably below the peak pressure Py for the conventional
propellant.

0f course, increasing the amount of propellant in the chamber would inorease p
and thus p ., but the strength of the gun limits the value of p, . BY using the
naximum amount of conventional gunpowder which may be contained even by speoially
strengthened guns, velocities of about 12,000 ft/sec have been reached with low mass

projectiles, This veloocity is about the maximum achievable with the conventional
propellant gun system.

An indicated in the preceding paragraph, there is obviously a practical limit to
the strength of the parts of a gun. The main parts of a gun system are (a) the
projectile, (b) the barrel, and (c) the gun chamber or chambers, The values of
stresses experienocrd by each of these components is dependent on the pressure pulse
to which it is subjected. (The ratu of pressure appliocation, as well ey the value
of the peak pressure, determinas the stresses experienced.) 1In piactice, the chambers
and barrels of guns may be designed to withstand static pressures up to about
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130,000 1b/in? without being permanently deformed; a rugged projectile, similarly,
may be designed to withstand 130,000 1b/in¢, whereas a fragile projectile may only
withstand, perhaps, 250,000 lb/inz.' Parts which are expendable may be designed to
deform but not rupture at transient pressireas as high as 1,000,000 1h/in?.

This discussion points to the main requirement in achieving e high projectile
velocity after having macde AlL/M as large as possible: the requirement of obtaining
a high uverage pressure [ behind & projectile, while at the same time limiting the
pressure rise in all parts of the gun system so as not to cause unacceptable damage
to the parts.

Section 3

The Velocity Attainable by Use of a
Constant Base Pressure Propellant

For a gun of given geometry propelling a given projectile, the quantities A , L,
and M are fixed, For this gun system there is a maximum allowable pressure Py
which the projectile can sustain, Under idealized circumstances one could hope that
the pressure of the propellant propelling the projectile would he constant and equal
to p, during the entire projectile travel. (Thus, P = Py = a constant.) This
situation is shown in the following sketch,

M

50-_;_.4{;223: Py=0

J

I
e
|

p

—
"
}|

L
o
L =

* Instead of the streas capability of the projeotile, one may disouss the acoeleration
onpability, The latter description may, be more pertinent if the projectile carrics “g”
limited payloads.
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Such an imagined propellant, whose propelling pressure would be maintained at a
vunsiant vaiue, 18 Known as a “constant base pressure propellant’ or “constant pressure
propellant’. 1In this case the projectile velocity attuined would be the maximum
attainable velocity ;or the given gun system. This veloeity, denoted as u, ., is
easily calculated by applying Newton's Law to the projectile, Thus®

du du
M—d—é’- = Mup-a;f = PA = DA (3-1)

which, when integrated along the barrel length, yields

2p AL

a4 = — (3-2)

. The first calculation one should make for a given gun when attempting to assess its
possibilities of attaining high velocity is the calculetion of wu,; for u, is the
highest veloocity attainable,

If, for example, a sphere is chosen as the projectile, u, becomes

2D AL 20 ((TD?/4)L, 3p, /L
u, = 2 = 0 3 = .—-Q(—) (3-3)
M @rp¥/8) 0 Py \D/
where Fp is the density of the projectile. Thus, for a very light projectile such

as & nylen sphere (pp = 1,2 g/om%) in a gun with a long barrel (L/D = 300), with

b, = 100,000 1b/in? (a relatively high pressure), Equation (3-3) yields u, = 75,000
ft/se0,

For the same gun with p, = 30,000 1b/in? u, 1is oalculated to be 42,000 ft/sec.

It becomes obvious that, even in the ldealized case of a constant propelling
preasura, one needs for high velocity extremely long guns, high pressures, and low
projectile masses; these needs are even more pronounced in the actual case where
the average propelling pressure is much below the peak pressure, Thus, the quest for'

a high velooity gun becomes a quest for a propellant which will maintain the propelling
pressure at e high value.

* Here, for the purpose of obtaining the maximum attainable veloecity, the friction on the

projectile and air pressure in front of it are assumed negligible.

it




Section 4

Description of the Preburned Propellant Gun

In this section will be considered the gun system in which the propellant hes been
completely reacted before the projectile is allowed to move. This gun system is termed
a “Preburned Propellant” Gun and desigrated as a PP Gun. The gun is visualized as
consisting of a chamber of diameter D, joined by means of a transition section to a
barrel of diameter D, . The projectile 1s positioned initially so that its back end
is at the beginning of the barrel section. Immediately before the projectile begins
to move, the reacted propellant produces in the chamber a gas at an initial and peak
pregsure p, end sound speed a, , temperature T, , etc. (See the following sketch,)

Gradual or Abrupt

Reacted Propellant Transition Section

o

Barrel

__j(__.
v

Chamber

When the chamber diameter is greater than the barrel diameter (Do/h1 > 1) the gun
18 described as a “chambered’” gun, or a gun with “chambrage”. Whon the chamber
diemeter is equal to that at the barrel, the gun is desoribed as “having no chambrage’,
or a8 & “oonstant diameter gun”.

In practice a preburned propellant gun may employ & diaphragm to separate the
propellant in the chamber from the projectile; this diaphragm is ruptured when the
propellant has completed its reaction, Another possibility is the use of & “shear
disc” around the projectile itnelf which shears when the reaction has been completed.
One type of a preburned propellant gun is that which uses as a propellant a non-
reacting gas (such as compressed helium).

In a preburned propellant gun the projeotile is restriocted from movement until the
pressure has reuched a peak value; it will be shown below that, after the projectile
is released, the pressure hehind the projectile decreases as the projectile increases
in velooity and moves along the barrel. (Bee the following sketch.)

AR
[
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The attainment of high veloocity in this case requires that the pressure decrease be
minimized; for maximum veloocity one would wish for the constant pressure propellant
previously mentioned which would maintain its pressurs at the peak value p, behind
the projectile during the projectile's entire trpvel...,

If the pressure behind the projectile were maintained at the initial peak value
by » the velocity in this idealized case is as caloulated in Equation (3-2),

u, = Vap AL/M

In practioce a veloocity equal to the velocity u, for the preburned propellant gun is
unattainable; this is a consequence of the fact that in such a gun, as will be shown
below, the pressure behind the projectile inevitably must drop as the projectile

velocity lnoreuses; unfortunately, the greater the projeotile velocity, the greater
will be the drop. M

Section B

A Qualitative Description of the Pressure Disturbances
Occurring During Firing of a Preburned Propellant Gun

When the projectile in a gun begins to move, it momentarily leaves a slightly
evacuated or a lower pressure space behind it., The layer* of gas that was initially
behind the projectile quickly moves (an infinitessimal amount) toward the projectile

* The gas is imagined to be composed of thin layers or discs of gas which are perpendioular
to the axis of the gun.




8

inilu Liils evacuaied space, Because there 1s now more space available to this first
gas layer, 1is pressure drops. The layer of gas immediately behind the first layer of
gas then, likewise, finds itself next to a slightly evacuated space (as a result of
the first layer's motion) and so it likewise moves into the evacuated aspace, Similarly,
each successive layer In turn moves into the space in front of it wbhich has been just
previously evacuated., This progression of successive movement is & disturbarce in the
gas which proceeds at the speed of sound. Since this disturbance is characterized by
the fact that it decreases the pressure and density of the gas through which 1t passes,
it is termed a rarefaction disturbance, (Other names for the disturbance gre impulse
wave, wavelet, or pulse; the adjective “acoustic’” o. “scund” is often put in front of
these terms.)

- o o @ 'Q{ - o] & V//

It is seen that the pressure drop roccompanying the disturbance results from the fact
that the projectile has accelerated and in turu each layer of gas has heen accelerated,
The quantitative value for this pressure drop from tho acocelerating projectile motinn
is given below., Qualitatively, the more quickly each la,er of gas muves into its
neighbor’' s evacuated space, the less is the pressure droy and the better able ls the
gas to push on the propellant. Thus, a good propellant gas wonld he one of lov
“inertia’ in this process of successive movement, t

During the entire movement of the profectile in the barrel, the projectile continues
to produce these rarefactions which travel toward the Lreech at the local velocity
of sound of the propellant gas. Consequently, the pressure of each layer of the gas
beéhind the projectile drops continuously as the projectile socelerates toward ihe
muzzle; in particular, the pressure of the gas layer directly behind the projectile
drops the most, since all of the rarefactions first truavel through this gas layer.

In & gun with no chambrage, i.e., a constant cross-sectlonal area gun, each layer
of gas similarly moves into the space vacated by its front neighbor until the layer
of gas next to the breech begina to move forward. The breech layer then begins to
move into the space vacated by its neighbor, but there is no neighbor behind it to
£i11 up the space it is vacating; thorefore, it is retarded in its motion and by so
doing leaves the space ahead into which it 18 moving somewhat evacuated. The neighbor
in front of the breech layer feels this slightly evacunted space behind it and so it
is retarded in its forward motion; this retardation of each neighbor in turn proceeds
toward the projectile, resulting in a progression of a rarefaction disturbance which
travels from the breech end toward the projectile end.

bt Lot |0 Fo - - = & o @

t 1t is shown below that the quantitative expression for the gas inertis is “ag”; for an ideal
lgas a0 1is inversely proportional to the initial sound speed for a given initial pressure
Bquation (11-3).
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Thiz digturbancs, which oilsinmtuo ut Lie breech end, 1s termed a “rerlected’” rare-

faction and is a result of the fact that there is a breech end. All of the rarefaction:
produced by the projectile reflect from the breech in this manner; they travel toward
the projectile, transmitting the information to the gas and the projectile that there

is a limited quantity of gas to fill the evacuated spaces. These reflected rarefaction:
lower the pressure of the gas through which they travel further than if there had been
no bresch. In particular, when these reflected rarefactions reach the back end of the
projectile, they lower the pressure behind the projectile; consequently, the projectile
velocity 1s not as large as it would have been 1f these refiected rarefactions had not
reached the projdctile.

A more complex phenomenon occurs in a gun with chambrage. In such a gun, as &
rarefaction traveling in the barre) toward the breech reaches the increasing area
section, the evacuated space is filled by gas flowing from B larger volume layer;
consequently, the pressure in the space is raised to higher value than if the gas had
moved from the constant diameter smaller bore layer. In turn, each layer of gas in
the transition section leaps into the space evacuated by the layer in front of it and
each tends to raise the pressure a little more than 1f they had been gas layers of the
same diameter as the bore. In effeot, therefore, the rarefaction impulses which are
produced from the back of the moving projectile when they come to the change of area
of the transition section are partially reflected as compression disturbances; these
compression impulses travel toward the projectile. Upon reaching the projectile they
raise the pressure behind the projectile, and therefore the projectile velocity, to a
value above that of a gun with no chambrage. 'Thus, the rarefactions produced by the
.projectile in a ohambered gun upon reaching the change of area section are partially

\ i ected as compression impulses and partially transmitted as rarefactions. The

tr smitted rarefactions continue their travel toward the breech still as rurefactious;
-at ‘the breech they are refleoted again as rarefactions and, at the transition section
of area decrease, a portion is reflected as a rarefaction and the remeining portion
continues its travel toward the projectile as a rarefaction. This sequence of events
continues as the projectile moves along the barrel.

In summary, changes in pressure of the gas behind the projectile ocourring in a
preburned propellant gun are these: (1) There is a drop in pressure from accelerating
projectile motion which is present during the entire projectile travel. .(2) There is
a drop in pressure caused, by rarefactinns reflecting from the breech which are present
in the latter stages of the projectile motion when these reflections reach the
projectile, (3) There 1s a rise in pressure from the compressions reflsoted from the
change in area section which is present during the entire projectile motion,

Rarefactions reflected Rarefactions from
from breech accelerating projectile
motion

Compressions reflected

\ from transition section

-~ > <
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Section 6

The Derivation of the Equations for
Disturbances Traveling in the Gas*

It is apparent from the discussion in Section 5 that changes in the gas are brought
about by the acoustic disturbances which travel in both directions in the propellent
gas, Although only infinitesimal chat.ges result from the passage of each disturbance,
fintte changes result from the passage of a multitude of these disturbances. Let the
changes wrought by a single infinitesimal disturbance traveling with velocity D into
a differential layer of gas in a constant diameter tube be examined. Let this layer
before the passage of the disturbance have a pressure p , a density o , and gas
velocity u ; after the disturbance passes the layer, these quantities are increased
by differential amounts as shown in the following sketch,

disturbance D
p+ dp Y /P P=p (x1)
u+du /6 u=u (x,t) =t
P+dp P A P=P (X,'I')
Gas Layer
—>» D
77777
Y pt dp//
[ u+ du t=t+dt
+ dp/
PLra

As indicated in the sketch, the layer of jas to be examined is traversed by the
disturbance in time dt . Thus, it is initially (D-u)dt long, and after passage
of the disturbance it is (D-u-du)dt 1long, as may be discerned from the next sketch.

.....éD

VV 7
pt+dp —> P b=t
Ddt "5 g

—& (ut+du)dt fe—~ > D

7 _

* See Appendix B for an alternate derivation.
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The mass of gas 18 therefore expressible in terms of the gas layer’s length before
or after traversal by the disturbance wave; hence
A(D -mpdt = A(D -u ~ du)dt (o + do) (6-1)

where A is the cross-sectional area of the tube.

During the entire time of passage of the disturbance wave a pressure of value
p + dp acts on the left end of the layer, while a pressure of value p acts in the
opposite direction on' the right end of the layer. Thus, the net pressure acting on
the layer is dp . The acceleration of the layer is the velocity change du experienced
by it divided by the elapsed time dt . Thus, Newton’s Law applied to the layer is

Adp = Ao(D - u)dt

_— . 6-2
[y JE— - dt ( )
net foroe mass accafgration
It du is eliminated from Equafions (6-1) and (8-2), one obtains
d .
@-m? = =, (6-3)

do

The assumption is here made that the infinitesimal changes which occur during the
yassage of the disturbance are isentrvpic (that is, reversible and adiabatic); thus,
the right hand side of Equation (6-3) 1s the square of the sound speed of the gas, a?

Equation (6-3) becomes
D-ucza
or
D=u+a . (6-4)

This disturbsnce is thus found to travel with the speed of sound relative to the gas.
Equations (8-2) and (6-4) may be combined to give

dp = aodu . (6-5)

This 18 the fundamental expression for the pressure change across & “u + a'"
disturbance wave.

In @ similar manner a disturbance traveling upstream could be analyzed. Such &
disturbance is shown in the following sketch.

D €
P p+dp
U (x,t) =t v -» utdu —»
P p +dp
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#wiil be fuuud Liwmi
dp = -modu (6-8)

across a ‘“u - a'* disturbance.

By examining the above equations one may determine the significant propellant gas
property which governs the magnitude of the pressure change due to the passage of a

disturbance in a constant diameter tube. Equations (8-5) and (6-6) may be rewritten
as

dp

(aodt) (du/dt)

(68-7)
dp

[}

—(aodt) (du/dt)

for the pressure change across & downstream and upstream disturbunce wave, respeotively.
The quantity *“ae”’ , the gas acoustic impedance or acoustic inertia, is the mass per
unit time traversed by a disturbance wave; it is thus properly identified as the inertia
of the propellant gas.

For small ap , the pressure change will be small to effect a given velocity change;
for large ap , the pressure change must be large to effect a given velocity change.
Thus, the acoustic inertia 8p of the gas is seen to be the fundamental gas property
which determines the magnitude of pressure changes required to produce given velocity
changes. It will be discussed further in Section 9.

For convenience, Equations (6-5) and (6-8) are usually rewritten in terms of changes
which ocour when traveling with or along the disturbance rather than those which occur
when traveling across the disturbance, Hence, since the change across & "“u + a”
disturbance equals the change along 8 “u - a&" disturbance, and vice versa, Equations

(6-5) and (6-8) become
dp +spdu = 0 (6-8)

along & “u + a" disturbance path,

it
o

dp - apdu (6-9)

along a “u - 8" disturbance path.

These equations aro known as the chare«ieristic equations; they permit a numerioal
solution to the interior ballistics »nrobt. o in the ocase of a gas flowing isentropioally
in a constant diameter tube. This :o.:nti.: 1<% possible because the infinitesimal

changes described in Equations (6-8) anrd ¢--¢. result in the finite changes which
ocour in the gas,
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Section 7

Summary of Equations Applicable to an Isentropic
Gas Expaniion in a Constant Cross-Sectional Area Tube

The meaning of the equations in Section 6, which apply to a gas which expands in a
constant cross-sectional area tube is discussed i1n Appendix C; the equations are
derived in a more rigorous fashion in Appendix B, It is assumed there that the gas
expansion is one-dimensional, Further, it is assumed that the flow is adiabatic and
reversible (isentropic), that 1s, that friction and heat-transfer effects within the
gas are negligible. (The irreversible effects are discussed in Part VIII.) These
assumptions have been shown to be a good approximation!’ 2 and permit a relatively
simple solution to the interior ballistics problem.

In Appendix B the one-dimensional momentum and continuity equations applied to a
layer of gas isentropically expanding in a constant dismeter tube are transformed into
the characteristic equations. These equations are there written in terms of the
“Riemann Function' o , defined as

do = (dp/ap)3 . . (7-1)

They are

du+do = 0 (7-2)
along the path of a characteristic line of slope dx/dt =u + a and

du -do = 0 . (7-3)
along the path of a characteristio line of slope dx/dt =u=-a . The u +a and.
u - a characteristic lines are thus the paths of disturbances. These equations are

the same as derived in the previous seotion. For consciseness they may be written
as (see Appernrdices A and C):

D(ut) 0
— o = .
Dt

Equations (7-2) and (7-3) may be integrated to yield
u + o is constant (1-4)
along the path of a disturbance traveling with speed u + a = dx/dt and

u - o 18 constant (7-5)

along the path of a disturbance traveling with speed u - a = dx/dt.
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Tne two sets of characteristic lines (disturbances) may be drawn in the xt-plane.
As explained in Appendix C, the u t a characteristic lines have a slope equal to

uta in this plane. Aleng each u *+ a characteristic line Lhe quantity u to
remains constant,

it A

vta

uta
/ DISTURBANCE

o I

X

DISTURBANCE

The characteristic Equations (7-4) and (7-5) may he applied to the gas expansion in )
any constant diameter tube (e.g., in the gun barrel or in the gun chamber) as f
demonstrated in the sectlona below. In particular, these equations, together with
the gas equation of state, may be direotly applied to a constant diameter gun,

In general, the solution of these equations is effacted numerically by progressively '
solving for conditions at the intersections of the u + a with u - a ocharacteristios
(see Appendix C and Appendix E). In speocial cuses a numerical solution is unnecessary
and the characteristio equations may be solved analytically. e {

Section B

The Characteristic Equations for the Effectively
Infinite Length Chamber, Do/Dx =1, PP Gun

A preburned propellant gun having a constant diameter chamber joined to a barrel of
the same diameter is considered. Before the projectile has begun to move the gun
appears as in the following sketch.

D

]
_l_ Chamber Barrel ,L

D Preburned b, =
© ] Propellont !

The— o —k N N

T O
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The fact that the chambor and barrel diometer are cgual is spocifiad he tha
Equation DD/D1 =1, Equations (7-3) and (7-4) may be applied to such a gun, \

When the projectile motion begins, a rarefaction disturbance is sent back with
the speed of sound (a,) into the gas behind it. The path of this disturbance is
shown a3 the line A-B-C in the following sketch.*

|

E

[ |

This disturbance reaches the back end at C and reflects, The reflected disturbance
is shown a8 C-D-E in the sketoch, As explained in Appendix D, the region A-C-E-A
is known as a “simple wave" region. Because no reflected disturbance reaches this
reglon, the entire region is desoribed by the equation

du +do = 0
or equivalently
du + dp/ao = 0 . (8-1)
I'I'his becomes upon integration
u+ fdp/ap = 0 (8-2)
or in terms of o,
u+o = o (8-3)

0

where u is taken to be equal to zero at p = p, and o=o, .

A gun whose chamber length X, is sufficiently long so that the first reflected
wave C-D-E does tiot reach the projectile before it remches the end of the barrel is
termed as “infinite chamber length gun' or an “effectively infinite chamber length gun”,

* Ususlly in an x-t plot, as in the sketoh, the projectile path is drawn as a single line
which aotually represents the path of the back end of the projectile.
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a gun is unaffected by the presence of the back or breech end; the projectile
performance is the same as it would be in & gun whose chamber length were truly
infinite. Thus, the gas behind the projectile in an intinite chamber length gun is
characterized by Equations (8-1), (8-2), and (8-3).

Section 9

Role of the Acoustic Inertia in the
DO/D1 =1, X, =®, PP Gun

In Section 6 it was noted that, for the expansion of a gas in a tube, the acoustic
impedance ap plays the role of the inertia of the gas. For the x = ®, DO/Dl =1,
PP Gun the acoustic impedance may be dirsctly related to the pressure drop behind the
projeotile.

Thus, Equation (8-1) desoribes any part of the gas behind the projevtile in an
X, =®, Do/D, =1, gun; it may be rewritten as

dp = -aodu . ' (8-1)

(This is in contrast to the situation in a PP gun which has DD, =1 and

X, not equal to ®, for then Equation (9-1) only applies to ‘“u + &' disturbances.)
From Equaetion (9-1) it is apparent that, when the velocity increases behind the
projectile, the pressure decreases. Moreover, Equation (9-1) indicates that the drop
in pressure for a given velocity inorease is directly proportional to ao . Thus,

in this unsteady expansion process the measure of the propelling gas inertis is ao ;
the drop in the pressure of the propelltng gas (and, in particular, of the gas
directly behind the projectile) is a direct result of the gas inertia so (and an
inevitable result unless ao can be made zero).

Equation (98-1) may be integrated to yield for the DO/D1 =1,x, =, PP gun the
velooity of the gas at any point in the flow

Po g
u =f 2. (8-2) .
p % )

It is seen that the velooity of the gas expanding from rest at initial pressure p,
in a DO/D1 =1,x, =ao,PP gun depends only on the acoustic impedance as a function
of pressure for the isentrope.

P LCDVV Qo
N
,c;ff o

V ——p

For a Dy/D, = 1, x,=®, PP gun the relationship between 80 and p determines the
entire propellant performance,
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Qaection 10

The Equation for the Projectile
By application cf Newton's Law to the projectile one obtains

dup
M- = g, (10-1)

where p. is the pressure directly behind the projectile snd u_ is the velocity of
the projectile. The barrel is here assumed evacuated and the frfctional forces on the
projectile gre assumed negligible, .

Section 11

The Equations for an ldeal Propellant Gas in a
PP Gun With D,/D, = 1. X, =

The words “PPIG Gun” designating “Preburned Propeilant Ideal Gas Gun’” refer to a
PP Gun with an ideal gas propellant.

An ideal (or perfect) gas is here defined by the following thermal and isentropic
equations. (See Appendix J) '

p PRI _ (11-1)

p = %ypy ‘ (11-2)

where the subscript “o* 1ndicnte§ the in{tinl rest state from which the gas
expands, The acoustic impedance becumas, for the isentropa

ol y4)

2y by
w = 1, /1(.9.) - m(z) . (11-3)
RTU Do “o \po

The sound velocity may be expressed for the idenl gas us

. fir
R L (11-4)
P m

and the Riemann funotion is calculated to be

O B e (11-8)

where o 18 taken to be meroat & = 0.




